Minimum significant correlation for a sample size
minSigCor.Rd
minSigCor
is a helper function that estimates the minimum
significant correlation for a sample size n
at a confidence level
defined by the argument alpha
.
Usage
minSigCor(n = 41, alpha = 0.05, r = seq(0, 1, by = 1e-6))
Arguments
- n
sample size or the length of a timeseries vector.
- alpha
confidence level: the default is
alpha = 0.05
for 95% confidence level.- r
a vector of values from
0
to1
to search for the minimum significant correlation for the user-specified sample sizen
at confidence levelalpha
. This should be a subset of the valid positive correlation range0-1
. The default is to search for the minimum significant correlation in the complete range0-1
with a very fine step of1e-6
. For faster computations, the user may set a shorter range with larger step (e.g., seq(0.1, 0.5, by=1e-3)).
Details
minSigCor
function estimates the minimum significant correlation
for a sample size (number of observations or temporal points in a timeseries)
at a certain confidence level selected by the argument alpha
and an
optional search range r
. It is called by validClimR
function objective tree cut based on the specified confidence level.
References
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2015): A Tool for Hierarchical Climate Regionalization, Earth Science Informatics, 8(4), 949-958, doi:10.1007/s12145-015-0221-7 .
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2014): Hierarchical Climate Regionalization, Comprehensive R Archive Network (CRAN), https://cran.r-project.org/package=HiClimR.
Author
Hamada S. Badr <badr@jhu.edu>, Benjamin F. Zaitchik <zaitchik@jhu.edu>, and Amin K. Dezfuli <amin.dezfuli@nasa.gov>.
See also
HiClimR
, HiClimR2nc
, validClimR
,
geogMask
, coarseR
, fastCor
,
grid2D
and minSigCor
.