Minimum significant correlation for a sample size
minSigCor.RdminSigCor is a helper function that estimates the minimum
significant correlation for a sample size n at a confidence level
defined by the argument alpha.
Usage
minSigCor(n = 41, alpha = 0.05, r = seq(0, 1, by = 1e-6))Arguments
- n
sample size or the length of a timeseries vector.
- alpha
confidence level: the default is
alpha = 0.05for 95% confidence level.- r
a vector of values from
0to1to search for the minimum significant correlation for the user-specified sample sizenat confidence levelalpha. This should be a subset of the valid positive correlation range0-1. The default is to search for the minimum significant correlation in the complete range0-1with a very fine step of1e-6. For faster computations, the user may set a shorter range with larger step (e.g., seq(0.1, 0.5, by=1e-3)).
Details
minSigCor function estimates the minimum significant correlation
for a sample size (number of observations or temporal points in a timeseries)
at a certain confidence level selected by the argument alpha and an
optional search range r. It is called by validClimR
function objective tree cut based on the specified confidence level.
References
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2015): A Tool for Hierarchical Climate Regionalization, Earth Science Informatics, 8(4), 949-958, doi:10.1007/s12145-015-0221-7 .
Hamada S. Badr, Zaitchik, B. F. and Dezfuli, A. K. (2014): Hierarchical Climate Regionalization, Comprehensive R Archive Network (CRAN), https://cran.r-project.org/package=HiClimR.
Author
Hamada S. Badr <badr@jhu.edu>, Benjamin F. Zaitchik <zaitchik@jhu.edu>, and Amin K. Dezfuli <amin.dezfuli@nasa.gov>.
See also
HiClimR, HiClimR2nc, validClimR,
geogMask, coarseR, fastCor,
grid2D and minSigCor.